Ene(entry six): IR(cm-1, KBr): 3391 (-NH ), 1614, 1583 (C=C), 741, 697 (aromatic), 1H NMR (400 MHz, CDCl3, TMS, ppm): 7.7 (2H, bs, 2NH), 7.6 (2H, d, J= 8.three Hz), 7.43 (2H, d, J= 7.eight Hz), 7.03 (2H, t, J= 8.15 Hz), 6.7 (2H, t, J= 7.3 Hz), four.five (4H, m, 2CH2); 13C NMR (400 MHz, CDCl3, TMS, ppm): 136.1 (2C), 132.four (2C), 124.four (2C), 118.9 (2C), 118 (2C), 111.7 (2C), 107.7 (4C), 30.9 (2C). 2-Methylindole (14-15)-(entry 7): IR(cm-1, KBr): 3399 (-NH), 1558 (C=C), 738, 691 (aromatic), 1H NMR (400 MHz, CDCl3, TMS, ppm): 7.6 (1H, bs, NH), 7.51 (1H, d, J=7.two Hz), 7.four (1H, d, J= 7.6 Hz), 7.23 (1H, t, J= 7.44 Hz), 7.1 (1H, t, J=7.1 Hz), 6.7 (1H, m), 1.9-2.three (3H, s, CH3); 13C NMR (400 MHz, CDCl3, TMS, ppm): 137.1, 136.0, 129.6, 120.9, 120.0, 119.6, 110.two, 100.1, 15.9. 2,3-Dimethylindole (14-15)-(entry eight): IR(cm-1, KBr): 3402 (-NH ), 1618, 1558 (C=C), 738, 636 (aromatic), 1H NMR (400 MHz, CDCl3, TMS, ppm): 7.45 (1H, bs, NH), 7.35 (1H, d, J=7.5 Hz), 7.35(1H, d, J=8 Hz), 7.15 (1H, t, J=7.78 ), 7.05 (1H, t, J= 7 Hz ), 2.7 (3H, s, CH3), 2.5 (3H, s, CH3); 13C NMR (400 MHz, CDCl3, TMS, ppm): 137.1, 129.0, 121.4, 120.1, 118.0, 113.six, 110.2, 106.1, 15.9, ten.1. 2-Phenylindole-(entry 9): IR(cm-1, KBr): 3350 (-NH ), 1599 (C=C), 744, 682 (aromatic), 1H NMR (400 MHz, CDCl3, TMS, ppm): 7.9 (1H, bs, NH), 7.65 (1H, d, J=7.5 Hz), 7.5 (1H, d,J=8.2 Hz), 7.41 (1H, t, J=7.4 Hz), 7.three (1H, t, J=7.05 Hz), 7.25 (3H, m), 7.1 (2H, t, J= eight Hz), 7 (1H, m); 13C NMR (400 MHz, CDCl3, TMS, ppm): 137.7, 135.two, 132.3, 128.3, 128.two, 128, 127, 124.2, 124.1, 121.five, 119.9, 119.1, 110.1, 100.1. 2-Styrylindole-(entry ten): IR(cm-1, KBr): 3345 (-NH ), 1601, 1504 (C=C), 748, 693 (aromatic), 1H NMR (400 MHz, CDCl3, TMS, ppm): eight.7 (1H, bs, NH), 7.8 (1H, d, J=7.6 Hz), 7.5 (1H, d, J=7.33 Hz), 7.42 (1H, t, J=7.53 Hz), 7.32 (1H, t, J=7 Hz), 7.2 (3H, m), 7.1 (2H, t, J= 8.three Hz), 7 (1H, m), six.9 (1H, d, J=15 Hz), 6.71 (1H, d, J=18 Hz); 13C NMR (400 MHz, CDCl3, TMS, ppm): 145.three, 141.two, 139.2, 129.three (2C), 128.4, 128.two (2C), 128.0, 125.6, 120.2, 113.three, 107.four (2C). In conclusion, we discovered marine sponge/H3PO4 to be an effective catalyst for indolisation of phenylhydrazones from ketones obtaining -hydrogens in solvent-free circumstances. The good quality of indolic goods is very good. This strategy provided marked improvement in comparison to previously reported ones. Its advantages incorporated operational simplicity, low reaction time, and higher yields of pure products. The authors wish to thank Marine Pharmaceutical Analysis Center of Ahvaz Jundishapur University of Healthcare Science; and professor Sayed Mohammad Bagher Nabavi for monetary support of this function.Shushizadeh MR et al.138517-61-0 site 6.1083326-73-1 uses 7.PMID:24282960 Wahab B, Ellames G, Passey S, Watts P. Synthesis of substituted indoles using continuous flow micro reactors. Tetrahedron. 2010;66(21):3861-5. Jiang H, Wang Y, Wan W, Hao J. p-TsOH promoted Fischer indole synthesis of multi-substituted 2-trifluoromethyl indole derivatives. Tetrahedron. 2010;66(14):2746-51. Xu DQ, Wu J, Luo SP, Zhang JX, Wu JY, Du XH, et al. Fischer indole synthesis catalyzed by novel SO3H-functionalized ionic liquids in water. Green Chem. 2009;11(8):1239-46. Park IK, Suh SE, Lim BY, Cho CG. Aryl hydrazide beyond as surrogate of aryl hydrazine within the Fischer indolization: the synthesis of N-Cbz-indoles, N-Cbz-carbazoles, and N,N’-bis-Cbz-pyrrolo[2,3f]indoles. Org Lett. 2009;11(23):5454-6. Jeanty M, Blu J, Suzenet F, Guillaumet G. Synthesis of 4- and 6-azaindoles through the Fischer reaction. Org Lett. 2009;11(22):5142-5. Sudhakara A, J.